fmcsR: mismatch tolerant maximum common substructure searching in R

نویسندگان

  • Yan Wang
  • Tyler W. H. Backman
  • Kevin Horan
  • Thomas Girke
چکیده

MOTIVATION The ability to accurately measure structural similarities among small molecules is important for many analysis routines in drug discovery and chemical genomics. Algorithms used for this purpose include fragment-based fingerprint and graph-based maximum common substructure (MCS) methods. MCS approaches provide one of the most accurate similarity measures. However, their rigid matching policies limit them to the identification of perfect MCSs. To eliminate this restriction, we introduce a new mismatch tolerant search method for identifying flexible MCSs (FMCSs) containing a user-definable number of atom and/or bond mismatches. RESULTS The fmcsR package provides an R interface, with the time-consuming steps of the FMCS algorithm implemented in C++. It includes utilities for pairwise compound comparisons, structure similarity searching, clustering and visualization of MCSs. In comparison with an existing MCS tool, fmcsR shows better time performance over a wide range of compound sizes. When mismatching of atoms or bonds is turned on, the compute times increase as expected, and the resulting FMCSs are often substantially larger than their strict MCS counterparts. Based on extensive virtual screening (VS) tests, the flexible matching feature enhances the enrichment of active structures at the top of MCS-based similarity search results. With respect to overall and early enrichment performance, FMCS outperforms most of the seven other VS methods considered in these tests. AVAILABILITY fmcsR is freely available for all common operating systems from the Bioconductor site (http://www.bioconductor.org/packages/devel/bioc/html/fmcsR.html). CONTACT [email protected]. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fmcsR: a Flexible Maximum Common Substructure Algorithm for Advanced Compound Similarity Searching

Maximum common substructure (MCS) algorithms rank among the most sensitive and accurate methods for measuring structural similarities among small molecules. This utility is critical for many research areas in drug discovery and chemical genomics. The MCS problem is a graph-based similarity concept that is defined as the largest substructure (sub-graph) shared among two compounds (Cao et al., 20...

متن کامل

Maximum Common Substructure-Based Data Fusion in Similarity Searching

Data fusion has been shown to work very well when applied to fingerprint-based similarity searching, yet little is known of its application to maximum common substructure (MCS)-based similarity searching. Two similarity search applications of the MCS will be focused on here. Typically, the number of bonds in the MCS, as well as the bonds in the two molecules being compared, are used in a simila...

متن کامل

Finding Characteristic Substructures for Metabolite Classes

We introduce a method for finding a characteristic substructure for a set of molecular structures. Different from common approaches, such as computing the maximum common subgraph, the resulting substructure does not have to be contained in its exact form in all input molecules. Our approach is part of the identification pipeline for unknown metabolites using fragmentation trees. Searching datab...

متن کامل

Defining parameters for homology-tolerant database searching.

De novo interpretation of tandem mass spectrometry (MS/MS) spectra provides sequences for searching protein databases when limited sequence information is present in the database. Our objective was to define a strategy for this type of homology-tolerant database search. Homology searches, using MS-Homology software, were conducted with 20, 10, or 5 of the most abundant peptides from 9 proteins,...

متن کامل

Making the most of approximate maximum common substructure search

The maximum common substructure (MCS) problem is of great importance in multiple aspects of chemoinformatics. It has diverse applications ranging from lead prediction to automated reaction mapping and visual alignment of similar compounds. Many different algorithms have been developed [1], both exact and approximate. Since the MCS problem is NP-complete, the strict time constraints of most appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 29 21  شماره 

صفحات  -

تاریخ انتشار 2013